
Using GNU Parallel to Package Multiple Jobs in a
Single PBS Job
Category: Effective Use of PBS

GNU is a complete, free software system, upward-compatible with Unix. GNU parallel is a
shell tool for executing jobs in parallel. It uses the lines of its standard input to modify shell
commands, which are then run in parallel. Detailed information about this tool can be found
on the GNU Operating System website and its related parellel man page.

On Pleiades, a copy of GNU parallel is available under /usr/bin.

The three examples below demonstrate how you can use GNU parallel to run multiple tasks
in a single PBS batch job.

Example 1

This example script runs 64 copies of a serial executable file, and assumes that 4 copies
will fit in the available memory of one node and that 16 nodes are used.

gnu_serial1.pbs

#PBS -lselect=16:ncpus=4
#PBS -lwalltime=4:00:00

cd $PBS_O_WORKDIR

seq 64 | parallel -j 4 -u --sshloginfile $PBS_NODEFILE \
 "cd $PWD;./myscript.csh {}"

In the above PBS script, the last command uses the parallel command to simultaneously
run 64 copies of myscript.csh located under $PBS_O_WORKDIR. Here is the specific
breakdown:

seq 64

Generates a set of integers 1, 2, 3, ..., 64 that will be passed to the parallel
command.

•

-j 4

GNU parallel will determine the number of processor cores on the remote computers
and run the number of tasks as specified by -j. In this case, -j 4 tells the the

•

Using GNU Parallel to Package Multiple Jobs in a Single PBS Job 1

http://www.gnu.org/software/parallel/
http://www.gnu.org/software/parallel/man.html

parallel command to run 4 tasks in parallel on one compute node.
-u

Tells the parallel command to print output as soon as possible. This may cause
output from different commands to be mixed. GNU parallel runs faster with -u. This
can be reversed with --group.

•

--sshloginfile $PBS_NODEFILE

Distributes tasks to the compute nodes listed in $PBS_NODEFILE.

•

"cd $PWD; ./myscript.csh {}"

Changes directory to the current working directory and runs myscript.csh located
under $PWD. At this point, $PWD is the same as $PBS_O_WORKDIR. The {} is an
input to myscript.csh (see below) and will be replaced by the sequence number
generated from seq 64.

•

myscript.csh

#!/bin/csh -fe
date
mkdir -p run_$1
cd run_$1

echo "Executing run $1 on" `hostname` "in $PWD"

$HOME/bin/a.out < ../input_$1 > output_$1

In this above sample script executed by the parallel command:

$1 refers to the sequence numbers (1, 2, 3, ..., 64) from the seq command that was
piped into the parallel command

•

For each serial run, a subdirectory named run_$1 (run_1, run_2, ...) is created•
The echo line prints information back to the PBS stdout file•
The serial a.out is located under $HOME/bin•
The input for each run, input_$1 (input_1, input_2, ...) is located under
$PBS_O_WORKDIR, which is the directory above run_$1

•

The output for each run (output_1, output_2, ...) is created under run_$1•

Potential Modifications to Example 1

There are multiple ways to pass arguments to parallel. For example, instead of using the
seq command to pass a sequence of integers, you can also pass in a list of directory
names or filenames using ls -1 or cat mylist, where the file mylist contains a list of
entries.

Category: Effective Use of PBS 2

Example 2

This script is similar to Example 1, except that 6 nodes are used instead of 16 nodes. This
means that 24 serial a.outs can be run simultaneously, since a total of 24 cores (6 nodes
x 4 cores) are requested. As each a.out completes its work on a core, another a.out is
launched by the parallel command to run on the same core.

myscript.csh is the same as that shown in the previous example.

gnu_serial2.pbs

#PBS -lselect=6:ncpus=4
#PBS -lwalltime=4:00:00

cd $PBS_O_WORKDIR

seq 64 | parallel -j 4 -u --sshloginfile $PBS_NODEFILE \
 "cd $PWD; ./myscript.csh {}"

Example 3

In this example, an OpenMP executable is run with 12 OpenMP threads on one Westmere
node. To run 64 copies of this executable with 10 copies running simultaneously on 10
nodes:

gnu_openmp.pbs

#PBS -lselect=10:ncpus=12:mpiprocs=1:ompthreads=12:model=wes
#PBS -lwalltime=4:00:00

cd $PBS_O_WORKDIR

seq 64 | parallel -j 1 -u --sshloginfile $PBS_NODEFILE \
 "cd $PWD; ./myopenmpscript.csh {}"

myopenmpscript.csh

#!/bin/csh -fe
date
mkdir -p run_$1
cd run_$1

setenv OMP_NUM_THREADS 12

Category: Effective Use of PBS 3

echo "Executing run $1 on" `hostname` "in $PWD"

$HOME/bin/a.out < ../input_$1 > output_$1

Article ID: 303
Last updated: 31 Jul, 2012
Computing at NAS -> Running Jobs with PBS -> Effective Use of PBS -> Using GNU
Parallel to Package Multiple Jobs in a Single PBS Job
http://www.nas.nasa.gov/hecc/support/kb/entry/303/?ajax=1

Category: Effective Use of PBS 4

http://www.nas.nasa.gov/hecc/support/kb/entry/303/?ajax=1

	303.html

